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RESUMO

A ocorréncia e diagnostico de fraturas vertebrais muitas vezes podem ser subnotificados, seja
por falta de sintomas ou profissionais disponiveis. Dado isso surge a op¢ao de incluséo de
sistemas de auxilio a diagnéstico através da implementacéo de algoritmos de aprendizado de
maquina para atuarem como segunda opiniao e permitindo um melhor diagnéstico, reduzindo
também o desgaste do profissional. Para o desenvolvimento deste projeto, foi estudado
o framework U-net para realizacdo automatizada de segmentacao de corpos vertebrais
fraturados de exames de ressonancia magnética provenientes de pacientes ( 36 homens
e 55 mulheres, com idade média de 64.24 + 11.75 anos) atendidos pelo HCMFRP-USP.
Utilizou-se do ambiente Jupyter e técnicas de aumento de base para o treino de modelos
que depois tiveram suas performances generalizadas, obtendo uma performance de até 0.89
para o coeficiente de Jaccard e 0.99 para o coeficiente de Dice na etapa de treinamento e
validacao; e 0,74 e 0,62 respectivamente para os coeficientes de Jaccard e Dice na etapa de

teste independente.

Palavras-chave: Corpos vertebrais, Ressonancia Magnética, U-Net
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1 INTRODUCAO

1.1 Contextualizagao

Fraturas vertebrais podem ocorrer de diversas formas, seja devido a osteoporose
ou cancer; ao contrario da maior parte das fraturas, grande parte das fraturas vertebrais
nao sao diagnosticadas no momento em que ocorrem. Apenas um quarto dos casos séao
clinicamente diagnosticados (ENSRUD; SCHOUSBOE, 2011). Esse tipo de fratura consta
como um dos tipos de fratura mais prevalentes e a falta de diagndstico se da pelo fato de
que fraturas vertebrais sdo assintomaticas ou causar incobmodo toleravel, além de falta de
uma rotina de deteccdes radiograficas (CHEN et al., 2021).

Na maioria das vezes, os diagndsticos podem precisar da atuacao de diversos profis-
sionais além de cirurgides ortopédicos, como a opinido de radiologistas; estes profissionais,
por sua vez, podem estar indisponiveis em horarios de pico ou hospitais de menor escala.
Dessa forma, a implementagédo de modelos de aprendizado de maquina € uma alternativa
atil (LI et al., 2021) como um modo de ’segunda opinidao’. De modo geral, técnicas de deep
learning em conjunto com as praticas tradicionais da radiologia tém o potencial de aprimorar
a velocidade e acuracia dos diagnésticos, reduzindo o desgaste do profissional (KALMET et
al., 2020).

1.2 Machine Learning e Deep Learning

Um algoritmo de machine ou deep learning é um processo computacional que utiliza
dados informados para realizar uma determinada tarefa sem que essa seja literalmente
programada para obter um resultado em particular (NAQA; MURPHY, 2022). Deep learning
€ uma classe de algoritmos dentro do campo do machine learning, abrangendo analise de
big data, segmentacédo de imagens e outros métodos. Observa-se na Figura 1 o workflow

geral do uso de deep learning na detec¢ao de fraturas.
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Figura 1 — Workflow de deep learning para deteccao de fraturas
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Fonte: (KALMET et al., 2020)

O ideal por tras do Machine Learning € simular o processo de pensamento humano.
Tradicionalmente, um algoritmo de machine learning alimentaria caracteristicas provenientes
de dados crus obtidos através de padrdes extraidos por computador. Esse processo contrasta
com a sub-categoria Deep Learning, que possibilita a combinagao de representagcao de
dados e aprendizado de tarefas (NAQA; MURPHY, 2022). A Figura 2 ilustra a relagéao entre
Inteligéncia Artificial, Machine Learning e Deep Learning, definindo Deep Learning como a
coleta de dados com representacao do aprendizado; Machine Learning como os algoritmos
que performam tarefas de predicdo sem programacao explicita e Inteligéncia Artificial como

sistemas humanizados capazes de realizar tarefas inteligentes como veiculos autbnomos.
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Figura 2 — Diagrama de Venn sobre a relacao entre Inteligéncia Artificial, Machine
Learning e Deep Learning

Artificial Intelligence
(humanized systems able
to perform intelligent
tasks, e.g., autonomous
vehicle, CADe, x)

achine Learning
(computer algorithms
perform prediction tasks
without being explicitly
programmed, e.g., decision
trees, neural networks,
support vector machines,...)

Deep Learning
(data abstraction with
Iearning representation,
e.g., CNN)

Fonte: (NAQA; MURPHY, 2022)

1.2.1  U-net

Desenvolvida por Olaf Ronneberger U-net € a arquitetura de deep learning mais popu-
lar no &mbito de segmentacao de imagens médicas (NAQA; MURPHY, 2022); desenvolvida
primariamente para segmentacao de imagens. Tendo por estrutura basica uma passagem de
analise, similar a redes de convolugao, e uma outra passagem para classificagao de informa-
cOes. A rede que resulta dessas operagdes possui formato quase simétrico, atingindo assim
uma forma de 'U’. (SIDDIQUE et al., 2021). O esquema ilustrado pela Figura 3 demonstra o

funcionamento da rede com uma imagem de dimensdes 572x572.
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Figura 3 — Arquitetura da U-net
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Fonte: (RONNEBERGER; FISCHER; BROX, 2015)

Cada quadrado azul corresponde a um multi-canal de caracteristicas. O numero de
canais é registrado acima da caixa. O tamanho x-y € definido na parte inferior esquerda
da caixa. As caixas brancas representam as caracteristicas copiadas e as setas denotam
as diferentes operacées (RONNEBERGER; FISCHER; BROX, 2015). Uma das vantagens
da arquitetura é que esta é mais rapida de treinar devido ao seu aprendizado baseado em
contexto (SIDDIQUE et al., 2021).

A arquitetura consiste de uma passagem de contracao (esquerda) e uma de
expansao (direita). A passagem de contracio segue a arquitetura tipica de uma
rede de convolugdo; aplicando repetidamente duas convolug¢des 3x3, cada uma
seguida por uma Unidade Linear Retificada (ReLU) e uma operagédo de 2x2
max pooling com a segunda etapa para reducéo de resolugao. A cada redugao,
0 numero de canais de caracteristicas é dobrado. Cada etapa da passagem
expansiva consiste em operacdes de convolugao transposta do mapa de
caracteristicas seguida por com convolugao 2x2, reduzindo pela metade o
namero de canais de recursos. Na camada final, € feita uma convolucéo
1x1 adicional para para mapear cada vetor de caracteristicas. No total, a
rede possui 23 camadas de convolugcao. (RONNEBERGER; FISCHER; BROX,
2015).

De acordo com SIDDIQUE et al., o que faz com que a U-net seja utilizada na comuni-
dade de Imagens Médicas é que esta possibilita a criagdo de mapas altamente detalhados

com amostras limitadas.
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1.3 Justificativa

A segmentacao de imagens médicas é uma etapa fundamental para diagndsticos,
planejamento e intervencdes de procedimentos cirurgicos. No entanto, grande parte das
técnicas utilizadas para executar essa etapa evolvem métodos manuais ou semi-automaticos,
sendo dessa forma muito trabalhosos. Assim, surge o desafio de se implementar se métodos
automaticos para realizar a segmentacao de imagens médicas (BAE et al., 2020), com o
auxilio desses métodos, promove-se a reprodutibilidade dos estudos feitos. Modelos de deep

learning foram ent&o criados para auxiliar nesse desafio.



2 FUNDAMENTAGCAO TEORICA

2.1 Fraturas Vertebrais por Compressao

Fraturas vertebrais por compressao (fvc) podem ser definidas radiograficamente ou
como um evento clinico. Como um evento clinico, sdo caracterizadas pela perda de peso
e dor aguda; radiograficamente, fvc podem ser assintomaticas (SILVERMAN, 1992). Fvc
ocorrem quando o corpo vertebral colapsa, o que pode fazer com que o paciente fique
incapacitado de realizar atividades da vida diaria (CORREIA, 2022). A Figura 4 apresenta

uma ilustracéo de fratura vertebral por compressao.

Figura 4 — Representacao de imagem digital para a forma de matriz de niveis de cinza

ILLUSTRATION 8Y CHARLES H. BOYTER

Fonte: (MCCARTHY; DAVIS, 2016)

Fraturas por compressao sao tipicamente diagnosticadas por radiografias laterais
da coluna vertebral. O critério radiografico inclui reducdo de ao menos 20% da altura do
corpo vertebral. Imagens obtidas por ressonancia magnética ajudam a distinguir fraturas
benignas das malignas e a determinar o tempo de cada fratura, dado que fraturas recentes
apresentam edema (MCCARTHY; DAVIS, 2016).

O tratamento de fvc pode ser cirargico ou ndo, sendo este por repouso em um curto
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periodo, uso de analgésicos e fisioterapia (CORREIA, 2022). Os objetivos do tratamento sao
alivio da dor, restaurar a fungéo e prevencgao de fraturas futuras. O inicio do tratamento deve

se iniciar com conversa com o paciente, discutindo riscos e beneficios de cada abordagem.

2.2 Reconhecimento de Padrées em Imagens Médicas

2.2.1 Imagem Médica Digital

A imagem médica digital € uma funcgao f(x,y) em escala de cinza distribuida como
coordenadas que pode ser representada por uma matriz, na qual o valor de cada pixel na
matriz indica um nivel de cinza no ponto (x,y) (SANTOS et al., 2019). A Figura 5 representa

uma imagem digital na forma de matriz.

Figura 5 — Representacao de imagem digital para a forma de matriz de niveis de cinza

Fonte: (CORREIA, 2022)

2.2.2 Etapas do reconhecimento de padrbes em imagens
2.2.2.1 Aquisicdo da Imagem

Para obter imagens de Ressonancia Magnética, o paciente é colocado em um campo
magnético e um pulso de ondas de radio é gerado por antenas posicionadas no paciente.
Assim, os protons do paciente absorvem as ondas e reemitem essa energia apés um periodo
de tempo que depende das propriedades magnéticas do tecido. A leitura do sinal transmitido
pelo paciente faz 0 mapeamento do sinal recebido para os niveis de cinza na imagem
(BUSHBERG et al., 2003).

As variagdes no pulso de radiofrequéncia e na interpretacdo do sinal permitem a
criacdo de imagens com diferentes tipos de contraste para um mesmo tecido, fazendo com
que a ressonancia magnética seja um dos exames mais sensiveis e detalhados (CORREIA,
2022).
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2.2.2.2 Segmentacao

E o processo de particdo de uma imagem em seus objetos constituintes. Em geral,
o reconhecimento € melhor conforme a acuracia da segmentagdo (GONZALES; WINTZ,
1987). Pode-se simplificar a segmentacéo utilizando formas definidas ou delineando na
imagem uma regido de interesse. Para imagens médicas, sdo utilizadas técnicas geralmente
baseadas nos niveis de cinza, descontinuidade ou similaridade da imagem (SANTOS et al.,
2019).

2.2.2.3 Extragao de Atributos

As caracteristicas sdo os valores numéricos que representam o exemplo dado ao
modelo. No caso de imagens médicas, as caracteristicas podem ser valores de pixels,
variagoes dos valores de pixels em uma regiao, etc. (ERICKSON et al., 2017). Para obté-los,
algoritmos realizam o célculo de valores numéricos que representam o conteudo visual; sdo
realizados procedimentos como a construcdo de histogramas, classificacdo de texturas, etc..
Por fim, os valores sdo armazenados em um vetor de atributos (SANTOS et al., 2019). De
acordo com SANTOS et al. e SANTOS et al., os atributos séo classificados nos seguintes

grupos:

 Cor (niveis de cinza): os atributos podem ser obtidos diretamente ou por analise do
histograma da imagem, que descreve a quantidade de niveis de cinza presentes na

imagem,;

» Textura: sdo atributos capazes de refletir detalhes dentro de uma leséo identificada na

imagem, dando informagdes sobre a distribuicao espacial do contetdo;

» Forma: esses atributos descrevem a borda da imagem e caracteristicas geométricas

do objeto.

2.2.2.4 Extragéo de Atributos Relevantes

A extracdo de caracteristicas consiste em fazer o algoritmo "ver"estruturas e tracos
nos dados recebidos, € melhor que o vetor de caracteristicas seja pequeno, mas € critico que
este seja adequado para representar dados e compreender os objetivos (NAQA; MURPHY,
2022). Como muitos atributos podem ser extraidos das imagens, realiza-se uma selecao

das caracteristicas mais relevantes; para isso, foram criados algoritmos que tém por objetivo
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reduzir a dimensionalidade espacial do vetor. Boa parte desses algoritmos utilizam de

aprendizado de maquina para executar essa tarefa (SANTOS et al., 2019).

2.2.2.5 Criacao do Modelo

O modelo é conjunto de pesos ou pontos de decisdo aprendido por um sistema de
aprendizado de maquina. Uma vez aprendido, o modelo pode ser designado a um exemplo
desconhecido para determinar a que classe tal exemplo pertence (ERICKSON et al., 2017).
Para criar o modelo, sao definidos os hiper-parametros épocas e batch size, que define
0 numero de vezes que o algoritmo ira percorrer o dataset de treino durante a fase da
aprendizagem e o que define o nimero de amostras utilizadas antes de atualizar o modelo
interno dos parametros (BROWNLEE, 2018), respectivamente.

A Figura 6 a seguir ilustra o processo de desenvolvimento de um modelo treinado
com machine learning no qual (a) apresenta a etapa de treinamento, em que sao extraidas
caracteristicas da imagem para criacao do vetor de caracteristicas para o algoritmo identificar
as propriedades dos exemplos (no caso da figura, diferenciar tumores benignos dos malignos).
Em (b) é representada a etapa do teste, na qual o modelo resultante de (a) é aplicado em
um novo conjunto de imagens para classifica-las e assim auxiliar o profissional a identificar o
tumor.

Figura 6 — Desenvolvimento de Modelo de Machine Learning

| a) Training: Iteratively learning until finding the best model to classify benign/malignant tumors ‘
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Fonte: (ERICKSON et al., 2017)




3 OBJETIVO

O presente Trabalho de Conclusdo de Curso tem por objetivo estudar, aplicar, treinar
e avaliar os resultados da aplicacdo de U-net para realizar a segmentacao automatizada de

corpos vertebrais fraturados de imagens provenientes de exames de ressonancia magnética.
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4 MATERIAIS E METODOS

A figura 7 a seguir retrata o esquema de etapas seguidas para a execug¢ao do projeto.
As imagens da base de dados foram redimensionadas, juntamente de suas mascaras. Como
€ necessario o mesmo numero de mascaras e imagens, alguns exames foram duplicados

para nao prejudicar o treinamento do modelo.

Figura 7 — Esquema das etapas da metodologia

. { Pré-processamento H Aumento de base ‘
,—~ Imagens treino -

Base de dados

I—’ Imagens teste

‘ Treino da U-net ‘

Avaliacdo dos Teste do modelo
resultados

Fonte: Préprio autor

4.1 Base de Dados

A base de dados utilizada consiste de exames anonimizados e com uso aprovado
pelo Comité de Etica em Pesquisa (CEP) do Hospital das Clinicas da Faculdade de Medicina
de Ribeirdo Preto da Universidade de Sdo Paulo - HCMFRP-USP, em corcondancia com
o parecer de numero 2.550.679 e o CAAE de numero 84415318.8.0000.5440. Os exames
provenientes de ressonancia magnética compreendem sequéncias ponderadas em T1 de 91
pacientes ( 36 homens e 55 mulheres, com idade média de 64.24 + 11.75 anos) atendidos

pelo HCMFRP-USP, sendo todos os pacientes diagnosticados com ao menos uma fratura
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vertebral por compressao dentre os corpos vertebrais de L1 a L5 na sequéncia sagital
(CORREIA, 2022).

4.2 Pré-processamento dos dados

Dado que as mascaras originais das vértebras fraturadas estavam em formato de
arquivo .nrrd, as mascaras foram manualmente refeitas para o formato .png utilizando o pro-
grama Photoshop tendo por base as mascaras originais. Apds a conversao, foi implementado
algoritmo para redimensionar todas as imagens para dimensdes de 256 x 256 pixels dado
gue as imagens originais apresentavam dimensdes diferentes entre si.

Com o pré-processamento dos dados concluido, as imagens e mascaras foram
separadas de modo que 80% do conteudo fosse utilizado para treino e os outros 20%
reservados para a etapa de teste. Dessa forma, 111 imagens passaram para a etapa de
aumento de base e treinamento, enquanto as 19 restantes foram apenas redimensionadas e
armazenadas para os testes futuros.

Para aprofundamento dos estudos, a base de dados original foi separada em 3 outras
bases mantendo a proporcao 80% para treino e 20% para teste. Estas 3 sub-bases foram
feitas de modo que imagens diferentes fossem utilizadas para a validagao dos modelos

criados.

4.3 Aumento de Base

A acuracia de CNNs é melhorada conforme o tamanho do dataset, assim é aplicado o
conceito de ’aumento de base’, no qual o conjunto original € aumentado através de operagdes
aleatérias de translacao, rotagao, giro e deformacao (SEO et al., 2020).

Para realizar essa etapa, foi utilizada a biblioteca Alboumentations (BUSLAEYV et al.,
2020), que possibilita a aplicacdo de diversas transformacdes as imagens. Neste trabalho,

foram realizadas as seguintes transformacdes:

Flip horizontal; Distorcao de grade;

Flip vertical; Center crop;

+ Distor¢ao optica; » Rotacao de 90

Transformacao elastica; Transposicao
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Realizando todas essas transformacdes obteve-se 1110 imagens para auxiliar o
treinamento do modelo.
O algoritmo de transformagéo elastica foi aplicado duas vezes ao aumento para

melhorar o reconhecimento de corpos vertebrais com formato anormal.

4.4 Construcao da Rede

A aplicacdo da U-net no presente trabalho foi feita com base no médulo 'Segmentacao
Semantica’ do curso 'Segmentacao de Imagens com Python de A a Z' de GRANATYR.
Com uso do ambiente Jupyter, foi utilizada versao 2.10.0 do Tensorflow; nesse ambiente foi
desenvolvido um algoritmo para aplicar o aumento de base e foi realizada a construcao da

rede com otimizador Adam.

4.5 Treino e Teste da Rede

Os modelos foram treinados todos com 50 épocas e batch size de 2. A cada rodada
executada, foram salvos apenas os modelos que apresentavam melhor custo de fungao.

Foram criados diversos modelos para testa-los com diferentes datasets que mantives-
sem a proporc¢ao 80% para treino e 20% para teste; assim, modelos foram feitos executando
certas combinac¢des de técnicas de aumento de base. Foram treinados modelos usando
apenas os flips vertical e horizontal, utilizando 5 transformacgdes, e utilizando todas as
transformacdes mencionadas anteriormente.

Apo6s a criacao dos modelos, os que apresentaram melhor desempenho foram utiliza-

dos nas outras sub-bases criadas a fim de obter generalizacao dos resultados.

4.6 Avaliagao dos Resultados

Para a andlise dos resultados, foram utilizadas duas das principais métricas de

avaliacao de performance em segmentacao de imagens mencionadas por SIDDIQUE et al.:

» Coeficiente de Dice: compara a similaridade entre duas amostras.

 2|GT N SR

Dice = ———
T GTI ISR

» Coeficiente de Jaccard (loU): mede a sobreposicao entre duas amostras.
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|GT N SR|

ToU =
Y T |GT USR]

Aqui, GT refere-se a mascara original (ground truth) e SR indica o resultado da
segmentagdo. Um score elevado indica resultados com maior acuracia.
As métricas foram calculadas para cada modelo criado a fim de obter comparacgao

entre os resultados obtidos.
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5 RESULTADOS E DISCUSSAO

A tabela a seguir demonstra os resultados da avaliacdo dos modelos. Para todos os
testes foram efetuadas 50 épocas avaliando a melhora ou ndo da perda. Nota-se que todos
os testes obtiveram média do loU acima de 0,6.

Aqui, GT refere-se ao resultado de um especialista (ground truth) e SR indica o
resultado da segmentacédo. Um score elevado indica resultados com maior acuracia.

Com a criacdo e aplicacdo de diversos modelos, foi possivel obter os resultados

apresentados na tabela 1

Tabela 1 — Todos os modelos feitos e seus resultados

modelo  dataset  épocas descrigdo loU médio Dice médio

1 1 50 2 transformagdes, 333 imagens 0.83333 099872
2 1 50 5 transformagdes, 666 imagens 0.71826 053

3 1 50 9 transformagdes, 1110 imagens 0.72228 0548
4 2 50 2 transformagdes, 333 imagens 0618 049579
5 2 50 5 transformagdes, 666 imagens 071008 0143075
6 2 50 9 transformagdes, 1110 imagens 0.71413 051532
7 3 50 2 transformagdes, 333 imagens 065139 042995
2 3 50 5 transformages, 666 imagens 0.66993 047083
9 3 50 9 transformagdes, 1110 imagens 0.63506 0151389
10 1 50 sem aumento de base 066417 041432
11 2 50 sem aumento de base 0830234 0797
12 3 50 sem aumento de base 0.66467 041074

Fonte: Préprio autor

5.1 Generalizacao dos Resultados

Dos resultados exibidos na tabela 1, os cinco melhores modelos foram selecionados
para serem testados em outras imagens a fim de analisar se este conseguiriam obter
resultado similar aos seus primeiros testes. A tabela 2 apresenta o desempenho dos modelos

1,2, 3,6 e 11 nas 19 imagens do conjunto de teste das outras sub-bases criadas:
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Tabela 2 — Resultado da aplicacao dos modelos em outras imagens

modelo  dataset  loU médio Dice médio Comparagdo com o original
1 2 07332 057333 piora
1 3 073422 0.51589 piora
2 2 077632 0.65074 melhora
2 3 0.75372 0.62474 melhora
3 2 0.76931 0.6230M melhora
3 3 0.75943 0.64279 melhora
6 1 0.83993 0.88547 melhora
6 3 0.74545 0.61279 melhora
11 1 0.78935 0.533 piora
11 3 074083 062053 piora

Fonte: Proprio autor

Foi observado que os modelos cuja performance melhorou (aumento nos valores dos
coeficiente de Dice e Jaccard) foram aqueles criados com o auxilio de aumento de base,
enquanto os modelos 1 e 11 que passaram por dois € nenhum aumento respectivamente
tiveram resultados piores que os originais; mostrando que os resultados que estes obtiveram
podem ter sido consequéncias de viés nas imagens.

A Figura 8 a seguir exibe em forma de grafico a diferenca de performance apés
generalizacéao dos resultados. Observa-se que, como anteriormente comentado, os modelos
treinados com aumento de base (2, 4 e 6) apresentam crescimento nos coeficientes de
Jaccard e Dice, enquanto ouve redugao nos resultados dos modelos restantes, treinados

com poucos exemplos.
Figura 8 — Grafico dos resultados originais e da generalizacao

Comparacao dos resultados da generalizagao
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5.2 Eficiéncia do Aumento de Base

As imagens resultantes de modelos treinados com aumento de base apresentam mais
detalhes quanto ao contorno dos corpos vertebrais. As figuras 9 e 10 a seguir retratam as
diferencas entre as predicdes provenientes de modelos treinados com e sem operacdes de
aumento de base.

Figura 9 — Predicao feita por modelo com aumento de base

Mascara real (ground truth) Predicao (U-Net)

Fonte: Préprio autor

Imagem original
(! Al

Figura 10 — Predicao feita por modelo sem aumento de base

Mascara real (ground truth) Predicdo (U-Net)

Fonte: Préprio autor

Imagem original
T B

Percebe-se também que a média do loU € menor quando comparada aos resultados
de modelos treinados com aumento de base. A imagem 11 a seguir exibe os coeficientes de

Jaccard e de Dice ap6s aplicagdo de modelos com e sem aumento na mesma imagem.

5.3 Resultado das Predicoes

As figuras 12, 13 e 14 apresentam algumas predi¢cdes e sdo acompanhadas de uma
breve discussao sobre os resultados obtidos. As segmentacdes apresentadas foram obtidas
a partir do modelo 6, uma vez que este foi treinado com o maior aumento de base, contendo
nove operacoes; e este obteve o melhor resultado no teste de generalizacdo. Cada caso

esta acompanhado de sua mascara verdadeira.
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Figura 11 — Coeficientes de Jaccard e Dice apos aplicacao de modelo com e sem
aumento de base

IoU: ©.91693485 IoU: ©.8969995
Accuracy: ©.9989471435546875 Accuracy: ©.9986572265625
Dice: ©.91 Dice: ©.886
Predicao com aumento Predigao sem aumento
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200 200
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Fonte: Préprio autor

Figura 12 — Caso em que o corpo é detectado, porém segmentado incorretamente
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Fonte: Préprio autor

A figura 12 demonstra que o modelo foi capaz de identificar que o corpo vertebral L4
estava fraturado, porém ndo conseguiu segmenta-lo corretamente. Isto pode ser devido ao

padrdo mais escuro da imagem original.
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Figura 13 — Caso em que estruturas vizinhas também sao segmentadas

Mascara real (ground truth)

Imagem original
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Dice: ©.72
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Fonte: Préprio autor

Semelhante ao caso anterior, a figura 13 demonstra que o modelo foi capaz de identifi-
car que o corpo vertebral L5 esta fraturado, porém ndo conseguiu segmenta-lo corretamente,
incluindo estruturas vizinhas na mascara gerada. Também neste caso € provavel que o
padrao da imagem original, na qual o corpo vertebral L2 possui tom de cinza similar ao corpo
fraturado, tenha prejudicado o desempenho do modelo. Tal resultado pode prejudicar o traba-
lho do profissional, uma vez que haveria retrabalho para checar se os corpos segmentados

incorretamente estao realmente fraturados ou nao.

Figura 14 — Caso em que a predicao melhor se aproxima da mascara verdadeira

Imagem original Mascara real (ground truth)
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Predicao (U-Net)
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Fonte: Préprio autor
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A predicao exibida na figura 14 apresentou o melhor resultado, tendo os melhores
coeficientes. Esse resultado pode ser de maior interesse para o radiologista, ja que exibe as
condig¢des do corpo vertebral fraturado e tem maior utilidade como "segunda opinido".

Os resultados exibidos demonstram a variabilidade dos resultados e suas possiveis
interpretacdes clinicas. No geral, os modelos foram capazes de executar predicoes satisfa-
térias para uma primeira implementacdo. Porém, fica evidente a necessidade de estudos
futuros voltados para o melhorias no processo de treinamento.

O trabalho realizado por HWANG; KIM; JUNG foi realizado com metodologia similar,
utilizando dados de ossos saudaveis e de ossos afetados por doengas hematoldgicas para
treinar modelos de U-net, contando com aumento de base, batch size de 32 e 100 épocas
para o treinamento. O modelo treinado apenas com dados de ossos adoecidos foi capaz de
obter médias do coeficiente de Jaccard de 0.9128 e Dice de 0.9502, segmentando todos os
corpos vertebrais presentes nas imagens. Nota-se que o modelo treinado a partir de dados
de ossos tanto saudaveis como de 0ssos prejudicados teve performance um pouco melhor
quanto ao que foi treinado apenas com 0ssos adoecidos.

Conseguindo segmentar os corpos vertebrais fraturados, mas nao atingindo métri-
cas de avaliacdo tao altas como o trabalho anteriormente mencionado; o modelo criado
no presente trabalho foi capaz de realizar o objetivo de segmentar os corpos vertebrais

fraturados.
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6 CONCLUSAO

O uso de técnicas de machine learning no ambiente clinico precisam gerar respostas
precisas e os algoritmos também devem ser ageis para que o profissional possa obter uma
"segunda opinido"confiavel. Dessa forma, pode-se concluir que a U-net possui alto potencial
para a segmentacao de corpos vertebrais, sejam esses fraturados ou nao; havendo também
diversos trabalhos na literatura focados na segmentacao tridimensional de corpos vertebrais
e outras estruturas do corpo.

Os modelos criados foram capazes de diferenciar corpos vertebrais fraturados dos
saudaveis. Assim, atendendo ao objetivo inicial do trabalho de estudo de modelo de U-net
para segmentacdo bidimensional. Com uma performance de até 0.89 para o coeficiente de
Jaccard e 0.99 para o coeficiente de Dice considerando a etapa de treinamento e validagao
e 0,74 e 0,62 respectivamente para os coeficientes de Jaccard e Dice considerando a etapa
de teste independente. Nota-se que modelos treinados de U-net sdo promissores para
segmentacao bidimensional de corpos vertebrais fraturados. Porém, deve-se ressaltar que
tais resultados podem melhorar significativamente com uma base de dados maior, pois esta
possibilitaria um aumento de base superior e, consequentemente, haveriam mais dados
disponiveis para o treino de modelos.

Espera-se que o presente trabalho realizado possa servir como base para outros
projetos a serem desenvolvidos e que futuramente o prognéstico e diagnéstico de fraturas

vertebrais seja melhor e mais acessivel aos pacientes.
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A seguir, pseudocédigo da légica seguida para a elaboracéo do cédigo feito neste
trabalho. Foram seguidas as aulas do curso "Segmentacao de Imagens de A a Z"de Jones

Granatyr na plataforma Udemy. O pseudocddigo foi dividido em blocos para facilitar a

compreensao

APENDICE A — CODIGO
DESENVOLVIDO

de cada etapa.

A.1 Importagao de Bibliotecas

import os, shutil

import numpy

import cv2

as np

from tqdm import tqdm

from matplot

import tenso

lib import pyplot as plt

rflow

import random

from glob2 i

mport glob

A.2 Carregar Base de Dados

def carregar
X_train
y_train
x_test =

y_test =

(X_train, y_

_dataset (caminho do arquivo):

= caminho das imagens de treino

= caminho das mascaras de treino
caminho das imagens de teste

caminho das mascaras de teste

train), (X_test, y_test) = carregar_dataset (caminho do

arquivo)

A3 Preé-

Processamento

largura = 256

altura = 265
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A.4. Aumento de base

canais = 3
dataset_imagens = imagens de X_train redimensionadas para largura e altura
mascaras = mascaras de y_test redimensionadas para largura, altura e canal

de cor alterado para 1

A.4 Aumento de base

import tensorflow as tf

import albumentations as A

def criar_diretorio(camimnho):
if diretorio nao existe:

criar diretorio novo

criar_diretorio(’Diretorio para imagens e m scaras de treino com aumento de
base?’)

criar_diretorio(’Diretorio para armazenar imagens e m scaras de teste’)

def aumento (imagens, mascaras, diretorio, altura, largura, aumento=True):
for imagens no diretorio informado:
if aumento = True:
aplicar transformacoes nas imagens
else:
nao aplicar transformacoes
for todas as imagens e mascaras:

redimesionar altura e largura para 256

aumento (X_train, y_train, ’Diretorio para imagens e mascaras de treino com
aumento de base’, aumento = True)

aumento (X_test, y_test, ’Diretorio para armazenar imagens e mascaras de
teste’, aumento = False)

A.5 Construcao da Rede

from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D,
UpSampling2D, concatenate, Conv2DTranspose, BatchNormalization, Dropout,

Lambda, RelLU
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from tensorflow.keras.optimizers import Adam

from tensorflow.keras.layers import Activation, MaxPool2D,

from tensorflow.keras.callbacks import ModelCheckpoint,
TensorBoard, ReduceLROnPlateau, CSVLogger
from tensorflow.keras.metrics import Recall, Precision4

from keras import backend as K

def bloco_cov(input, num_filtros):

criar bloco de convolucao

def bloco_encoder (input, num_filtros):

criar bloco bloco_encoder

def bloco_decoder (input, num_filtros):

criar bloco de bloco_decoder

def modelo_unet (formato):

montar modelo de u-net

def IoU(mascara_verdadeira, predicao, smooth = 1):

definir o calculo do IoU

def coef_Dice(mascara_verdadeira, predicao, smooth = 1):

definir o calculo do coeficiente de Dice

def perda_coef_dice(mascara_verdadeira, predicao):

definir a perda do coeficiente de Dice

epochs = 50

batch_size = 2
lr = 1le-4
modelo = modelo_unet ((altura, largura, 3))

Concatenate

EarlyStopping,

A.6 Treinamento

criar_diretorio(Criar diretorio para armazenar os modelos

callbacks (implementar save_best_only para salvar apenas o melhor modelo)

criados)
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A.7. Carregar Modelo
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history = treinar modelo

A.7 Carregar Modelo

from tensorflow.keras.utils import CustomObjectScope

from tensorflow.keras.models import load_model
modelo_teste = carregar (carregar modelo salvo)
def segmenta_imagem(imagem, modelo):

predicao = aplicar modelo_teste em imagem
carregar diretorio de imagens teste
for imagens em imagens_teste:

predicao = segementa_imagem(imagem, modelo_teste)

A.9 Avaliacao

from sklearn.metrics import accuracy_score

from tensorflow.keras.metrics import MeanIoU

lista_scores = []

for imagens em teste_imagens:

segmenta_imagem (imagem, modelo_teste)

Iou = valor_iou(mascara, predicao)
dice = dice_coe(mascara, predicao)
lista_scores = recebe os valores de Iou e Dice para cada predicao

print (£"\nM dia do IoU: media do Iou'")

print (£"\nM dia do coeficiente de Dice:

lista_scores

media do coeficiente de Dice")




