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RESUMO
A ocorrência e diagnóstico de fraturas vertebrais muitas vezes podem ser subnotificados, seja

por falta de sintomas ou profissionais disponíveis. Dado isso surge a opção de inclusão de

sistemas de auxílio a diagnóstico através da implementação de algoritmos de aprendizado de

máquina para atuarem como segunda opinião e permitindo um melhor diagnóstico, reduzindo

também o desgaste do profissional. Para o desenvolvimento deste projeto, foi estudado

o framework U-net para realização automatizada de segmentação de corpos vertebrais

fraturados de exames de ressonância magnética provenientes de pacientes ( 36 homens

e 55 mulheres, com idade média de 64.24 ± 11.75 anos) atendidos pelo HCMFRP-USP.

Utilizou-se do ambiente Jupyter e técnicas de aumento de base para o treino de modelos

que depois tiveram suas performances generalizadas, obtendo uma performance de até 0.89

para o coeficiente de Jaccard e 0.99 para o coeficiente de Dice na etapa de treinamento e

validação; e 0,74 e 0,62 respectivamente para os coeficientes de Jaccard e Dice na etapa de

teste independente.

Palavras-chave: Corpos vertebrais, Ressonância Magnética, U-Net
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1 INTRODUÇÃO

1.1 Contextualização

Fraturas vertebrais podem ocorrer de diversas formas, seja devido à osteoporose

ou câncer; ao contrário da maior parte das fraturas, grande parte das fraturas vertebrais

não são diagnosticadas no momento em que ocorrem. Apenas um quarto dos casos são

clinicamente diagnosticados (ENSRUD; SCHOUSBOE, 2011). Esse tipo de fratura consta

como um dos tipos de fratura mais prevalentes e a falta de diagnóstico se dá pelo fato de

que fraturas vertebrais são assintomáticas ou causar incômodo tolerável, além de falta de

uma rotina de detecções radiográficas (CHEN et al., 2021).

Na maioria das vezes, os diagnósticos podem precisar da atuação de diversos profis-

sionais além de cirurgiões ortopédicos, como a opinião de radiologistas; estes profissionais,

por sua vez, podem estar indisponíveis em horários de pico ou hospitais de menor escala.

Dessa forma, a implementação de modelos de aprendizado de máquina é uma alternativa

útil (LI et al., 2021) como um modo de ’segunda opinião’. De modo geral, técnicas de deep

learning em conjunto com as práticas tradicionais da radiologia têm o potencial de aprimorar

a velocidade e acurácia dos diagnósticos, reduzindo o desgaste do profissional (KALMET et

al., 2020).

1.2 Machine Learning e Deep Learning

Um algoritmo de machine ou deep learning é um processo computacional que utiliza

dados informados para realizar uma determinada tarefa sem que essa seja literalmente

programada para obter um resultado em particular (NAQA; MURPHY, 2022). Deep learning

é uma classe de algoritmos dentro do campo do machine learning, abrangendo análise de

big data, segmentação de imagens e outros métodos. Observa-se na Figura 1 o workflow

geral do uso de deep learning na detecção de fraturas.
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Figura 1 – Workflow de deep learning para detecção de fraturas

Fonte: (KALMET et al., 2020)

O ideal por trás do Machine Learning é simular o processo de pensamento humano.

Tradicionalmente, um algoritmo de machine learning alimentaria características provenientes

de dados crus obtidos através de padrões extraídos por computador. Esse processo contrasta

com a sub-categoria Deep Learning, que possibilita a combinação de representação de

dados e aprendizado de tarefas (NAQA; MURPHY, 2022). A Figura 2 ilustra a relação entre

Inteligência Artificial, Machine Learning e Deep Learning, definindo Deep Learning como a

coleta de dados com representação do aprendizado; Machine Learning como os algoritmos

que performam tarefas de predição sem programação explícita e Inteligência Artificial como

sistemas humanizados capazes de realizar tarefas inteligentes como veículos autônomos.
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Figura 2 – Diagrama de Venn sobre a relação entre Inteligência Artificial, Machine
Learning e Deep Learning

Fonte: (NAQA; MURPHY, 2022)

1.2.1 U-net

Desenvolvida por Olaf Ronneberger U-net é a arquitetura de deep learning mais popu-

lar no âmbito de segmentação de imagens médicas (NAQA; MURPHY, 2022); desenvolvida

primariamente para segmentação de imagens. Tendo por estrutura básica uma passagem de

análise, similar a redes de convolução, e uma outra passagem para classificação de informa-

ções. A rede que resulta dessas operações possui formato quase simétrico, atingindo assim

uma forma de ’U’. (SIDDIQUE et al., 2021). O esquema ilustrado pela Figura 3 demonstra o

funcionamento da rede com uma imagem de dimensões 572x572.
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Figura 3 – Arquitetura da U-net

Fonte: (RONNEBERGER; FISCHER; BROX, 2015)

Cada quadrado azul corresponde a um multi-canal de características. O número de

canais é registrado acima da caixa. O tamanho x-y é definido na parte inferior esquerda

da caixa. As caixas brancas representam as características copiadas e as setas denotam

as diferentes operações (RONNEBERGER; FISCHER; BROX, 2015). Uma das vantagens

da arquitetura é que esta é mais rápida de treinar devido ao seu aprendizado baseado em

contexto (SIDDIQUE et al., 2021).

A arquitetura consiste de uma passagem de contração (esquerda) e uma de
expansão (direita). A passagem de contração segue a arquitetura típica de uma
rede de convolução; aplicando repetidamente duas convoluções 3x3, cada uma
seguida por uma Unidade Linear Retificada (ReLU) e uma operação de 2x2
max pooling com a segunda etapa para redução de resolução. A cada redução,
o número de canais de características é dobrado. Cada etapa da passagem
expansiva consiste em operações de convolução transposta do mapa de
características seguida por com convolução 2x2, reduzindo pela metade o
número de canais de recursos. Na camada final, é feita uma convolução
1x1 adicional para para mapear cada vetor de características. No total, a
rede possui 23 camadas de convolução. (RONNEBERGER; FISCHER; BROX,
2015).

De acordo com SIDDIQUE et al., o que faz com que a U-net seja utilizada na comuni-

dade de Imagens Médicas é que esta possibilita a criação de mapas altamente detalhados

com amostras limitadas.
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1.3 Justificativa

A segmentação de imagens médicas é uma etapa fundamental para diagnósticos,

planejamento e intervenções de procedimentos cirúrgicos. No entanto, grande parte das

técnicas utilizadas para executar essa etapa evolvem métodos manuais ou semi-automáticos,

sendo dessa forma muito trabalhosos. Assim, surge o desafio de se implementar se métodos

automáticos para realizar a segmentação de imagens médicas (BAE et al., 2020), com o

auxílio desses métodos, promove-se a reprodutibilidade dos estudos feitos. Modelos de deep

learning foram então criados para auxiliar nesse desafio.



2 FUNDAMENTAÇÃO TEÓRICA

2.1 Fraturas Vertebrais por Compressão

Fraturas vertebrais por compressão (fvc) podem ser definidas radiograficamente ou

como um evento clínico. Como um evento clínico, são caracterizadas pela perda de peso

e dor aguda; radiograficamente, fvc podem ser assintomáticas (SILVERMAN, 1992). Fvc

ocorrem quando o corpo vertebral colapsa, o que pode fazer com que o paciente fique

incapacitado de realizar atividades da vida diária (CORREIA, 2022). A Figura 4 apresenta

uma ilustração de fratura vertebral por compressão.

Figura 4 – Representação de imagem digital para a forma de matriz de níveis de cinza

Fonte: (MCCARTHY; DAVIS, 2016)

Fraturas por compressão são tipicamente diagnosticadas por radiografias laterais

da coluna vertebral. O critério radiográfico inclui redução de ao menos 20% da altura do

corpo vertebral. Imagens obtidas por ressonância magnética ajudam a distinguir fraturas

benignas das malignas e a determinar o tempo de cada fratura, dado que fraturas recentes

apresentam edema (MCCARTHY; DAVIS, 2016).

O tratamento de fvc pode ser cirúrgico ou não, sendo este por repouso em um curto



2.2. Reconhecimento de Padrões em Imagens Médicas 19

período, uso de analgésicos e fisioterapia (CORREIA, 2022). Os objetivos do tratamento são

alívio da dor, restaurar a função e prevenção de fraturas futuras. O início do tratamento deve

se iniciar com conversa com o paciente, discutindo riscos e benefícios de cada abordagem.

2.2 Reconhecimento de Padrões em Imagens Médicas

2.2.1 Imagem Médica Digital

A imagem médica digital é uma função f(x,y) em escala de cinza distribuída como

coordenadas que pode ser representada por uma matriz, na qual o valor de cada pixel na

matriz indica um nível de cinza no ponto (x,y) (SANTOS et al., 2019). A Figura 5 representa

uma imagem digital na forma de matriz.

Figura 5 – Representação de imagem digital para a forma de matriz de níveis de cinza

Fonte: (CORREIA, 2022)

2.2.2 Etapas do reconhecimento de padrões em imagens

2.2.2.1 Aquisição da Imagem

Para obter imagens de Ressonância Magnética, o paciente é colocado em um campo

magnético e um pulso de ondas de rádio é gerado por antenas posicionadas no paciente.

Assim, os prótons do paciente absorvem as ondas e reemitem essa energia após um período

de tempo que depende das propriedades magnéticas do tecido. A leitura do sinal transmitido

pelo paciente faz o mapeamento do sinal recebido para os níveis de cinza na imagem

(BUSHBERG et al., 2003).

As variações no pulso de radiofrequência e na interpretação do sinal permitem a

criação de imagens com diferentes tipos de contraste para um mesmo tecido, fazendo com

que a ressonância magnética seja um dos exames mais sensíveis e detalhados (CORREIA,

2022).



20 Capítulo 2. Fundamentação Teórica

2.2.2.2 Segmentação

É o processo de partição de uma imagem em seus objetos constituintes. Em geral,

o reconhecimento é melhor conforme a acurácia da segmentação (GONZALES; WINTZ,

1987). Pode-se simplificar a segmentação utilizando formas definidas ou delineando na

imagem uma região de interesse. Para imagens médicas, são utilizadas técnicas geralmente

baseadas nos níveis de cinza, descontinuidade ou similaridade da imagem (SANTOS et al.,

2019).

2.2.2.3 Extração de Atributos

As características são os valores numéricos que representam o exemplo dado ao

modelo. No caso de imagens médicas, as características podem ser valores de pixels,

variações dos valores de pixels em uma região, etc. (ERICKSON et al., 2017). Para obtê-los,

algoritmos realizam o cálculo de valores numéricos que representam o conteúdo visual; são

realizados procedimentos como a construção de histogramas, classificação de texturas, etc..

Por fim, os valores são armazenados em um vetor de atributos (SANTOS et al., 2019). De

acordo com SANTOS et al. e SANTOS et al., os atributos são classificados nos seguintes

grupos:

• Cor (níveis de cinza): os atributos podem ser obtidos diretamente ou por análise do

histograma da imagem, que descreve a quantidade de níveis de cinza presentes na

imagem;

• Textura: são atributos capazes de refletir detalhes dentro de uma lesão identificada na

imagem, dando informações sobre a distribuição espacial do conteúdo;

• Forma: esses atributos descrevem a borda da imagem e características geométricas

do objeto.

2.2.2.4 Extração de Atributos Relevantes

A extração de características consiste em fazer o algoritmo "ver"estruturas e traços

nos dados recebidos, é melhor que o vetor de características seja pequeno, mas é crítico que

este seja adequado para representar dados e compreender os objetivos (NAQA; MURPHY,

2022). Como muitos atributos podem ser extraídos das imagens, realiza-se uma seleção

das características mais relevantes; para isso, foram criados algoritmos que têm por objetivo
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reduzir a dimensionalidade espacial do vetor. Boa parte desses algoritmos utilizam de

aprendizado de máquina para executar essa tarefa (SANTOS et al., 2019).

2.2.2.5 Criação do Modelo

O modelo é conjunto de pesos ou pontos de decisão aprendido por um sistema de

aprendizado de máquina. Uma vez aprendido, o modelo pode ser designado a um exemplo

desconhecido para determinar a que classe tal exemplo pertence (ERICKSON et al., 2017).

Para criar o modelo, são definidos os hiper-parâmetros épocas e batch size, que define

o número de vezes que o algoritmo irá percorrer o dataset de treino durante a fase da

aprendizagem e o que define o número de amostras utilizadas antes de atualizar o modelo

interno dos parâmetros (BROWNLEE, 2018), respectivamente.

A Figura 6 a seguir ilustra o processo de desenvolvimento de um modelo treinado

com machine learning no qual (a) apresenta a etapa de treinamento, em que são extraídas

características da imagem para criação do vetor de características para o algoritmo identificar

as propriedades dos exemplos (no caso da figura, diferenciar tumores benignos dos malignos).

Em (b) é representada a etapa do teste, na qual o modelo resultante de (a) é aplicado em

um novo conjunto de imagens para classificá-las e assim auxiliar o profissional a identificar o

tumor.

Figura 6 – Desenvolvimento de Modelo de Machine Learning

Fonte: (ERICKSON et al., 2017)



3 OBJETIVO

O presente Trabalho de Conclusão de Curso tem por objetivo estudar, aplicar, treinar

e avaliar os resultados da aplicação de U-net para realizar a segmentação automatizada de

corpos vertebrais fraturados de imagens provenientes de exames de ressonância magnética.
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4 MATERIAIS E MÉTODOS

A figura 7 a seguir retrata o esquema de etapas seguidas para a execução do projeto.

As imagens da base de dados foram redimensionadas, juntamente de suas máscaras. Como

é necessário o mesmo número de máscaras e imagens, alguns exames foram duplicados

para não prejudicar o treinamento do modelo.

Figura 7 – Esquema das etapas da metodologia

Fonte: Próprio autor

4.1 Base de Dados

A base de dados utilizada consiste de exames anonimizados e com uso aprovado

pelo Comitê de Ética em Pesquisa (CEP) do Hospital das Clínicas da Faculdade de Medicina

de Ribeirão Preto da Universidade de São Paulo - HCMFRP-USP, em corcondância com

o parecer de número 2.550.679 e o CAAE de número 84415318.8.0000.5440. Os exames

provenientes de ressonância magnética compreendem sequências ponderadas em T1 de 91

pacientes ( 36 homens e 55 mulheres, com idade média de 64.24 ± 11.75 anos) atendidos

pelo HCMFRP-USP, sendo todos os pacientes diagnosticados com ao menos uma fratura
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vertebral por compressão dentre os corpos vertebrais de L1 a L5 na sequência sagital

(CORREIA, 2022).

4.2 Pré-processamento dos dados

Dado que as máscaras originais das vértebras fraturadas estavam em formato de

arquivo .nrrd, as máscaras foram manualmente refeitas para o formato .png utilizando o pro-

grama Photoshop tendo por base as máscaras originais. Após a conversão, foi implementado

algoritmo para redimensionar todas as imagens para dimensões de 256 x 256 pixels dado

que as imagens originais apresentavam dimensões diferentes entre si.

Com o pré-processamento dos dados concluído, as imagens e máscaras foram

separadas de modo que 80% do conteúdo fosse utilizado para treino e os outros 20%

reservados para a etapa de teste. Dessa forma, 111 imagens passaram para a etapa de

aumento de base e treinamento, enquanto as 19 restantes foram apenas redimensionadas e

armazenadas para os testes futuros.

Para aprofundamento dos estudos, a base de dados original foi separada em 3 outras

bases mantendo a proporção 80% para treino e 20% para teste. Estas 3 sub-bases foram

feitas de modo que imagens diferentes fossem utilizadas para a validação dos modelos

criados.

4.3 Aumento de Base

A acurácia de CNNs é melhorada conforme o tamanho do dataset, assim é aplicado o

conceito de ’aumento de base’, no qual o conjunto original é aumentado através de operações

aleatórias de translação, rotação, giro e deformação (SEO et al., 2020).

Para realizar essa etapa, foi utilizada a biblioteca Albumentations (BUSLAEV et al.,

2020), que possibilita a aplicação de diversas transformações às imagens. Neste trabalho,

foram realizadas as seguintes transformações:

• Flip horizontal;

• Flip vertical;

• Distorção óptica;

• Transformação elástica;

• Distorção de grade;

• Center crop;

• Rotação de 90º;

• Transposição
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Realizando todas essas transformações obteve-se 1110 imagens para auxiliar o

treinamento do modelo.

O algoritmo de transformação elástica foi aplicado duas vezes ao aumento para

melhorar o reconhecimento de corpos vertebrais com formato anormal.

4.4 Construção da Rede

A aplicação da U-net no presente trabalho foi feita com base no módulo ’Segmentação

Semântica’ do curso ’Segmentação de Imagens com Python de A a Z’ de GRANATYR.

Com uso do ambiente Jupyter, foi utilizada versão 2.10.0 do Tensorflow; nesse ambiente foi

desenvolvido um algoritmo para aplicar o aumento de base e foi realizada a construção da

rede com otimizador Adam.

4.5 Treino e Teste da Rede

Os modelos foram treinados todos com 50 épocas e batch size de 2. A cada rodada

executada, foram salvos apenas os modelos que apresentavam melhor custo de função.

Foram criados diversos modelos para testá-los com diferentes datasets que mantives-

sem a proporção 80% para treino e 20% para teste; assim, modelos foram feitos executando

certas combinações de técnicas de aumento de base. Foram treinados modelos usando

apenas os flips vertical e horizontal, utilizando 5 transformações, e utilizando todas as

transformações mencionadas anteriormente.

Após a criação dos modelos, os que apresentaram melhor desempenho foram utiliza-

dos nas outras sub-bases criadas a fim de obter generalização dos resultados.

4.6 Avaliação dos Resultados

Para a análise dos resultados, foram utilizadas duas das principais métricas de

avaliação de performance em segmentação de imagens mencionadas por SIDDIQUE et al.:

• Coeficiente de Dice: compara a similaridade entre duas amostras.

Dice =
2|GT ∩ SR|
|GT |+ |SR|

• Coeficiente de Jaccard (IoU): mede a sobreposição entre duas amostras.
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IoU =
|GT ∩ SR|
|GT ∪ SR|

Aqui, GT refere-se à máscara original (ground truth) e SR indica o resultado da

segmentação. Um score elevado indica resultados com maior acurácia.

As métricas foram calculadas para cada modelo criado a fim de obter comparação

entre os resultados obtidos.
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5 RESULTADOS E DISCUSSÃO

A tabela a seguir demonstra os resultados da avaliação dos modelos. Para todos os

testes foram efetuadas 50 épocas avaliando a melhora ou não da perda. Nota-se que todos

os testes obtiveram média do IoU acima de 0,6.

Aqui, GT refere-se ao resultado de um especialista (ground truth) e SR indica o

resultado da segmentação. Um score elevado indica resultados com maior acurácia.

Com a criação e aplicação de diversos modelos, foi possível obter os resultados

apresentados na tabela 1

Tabela 1 – Todos os modelos feitos e seus resultados

Fonte: Próprio autor

5.1 Generalização dos Resultados

Dos resultados exibidos na tabela 1, os cinco melhores modelos foram selecionados

para serem testados em outras imagens a fim de analisar se este conseguiriam obter

resultado similar aos seus primeiros testes. A tabela 2 apresenta o desempenho dos modelos

1, 2, 3, 6 e 11 nas 19 imagens do conjunto de teste das outras sub-bases criadas:
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Tabela 2 – Resultado da aplicação dos modelos em outras imagens

Fonte: Próprio autor

Foi observado que os modelos cuja performance melhorou (aumento nos valores dos

coeficiente de Dice e Jaccard) foram aqueles criados com o auxílio de aumento de base,

enquanto os modelos 1 e 11 que passaram por dois e nenhum aumento respectivamente

tiveram resultados piores que os originais; mostrando que os resultados que estes obtiveram

podem ter sido consequências de viés nas imagens.

A Figura 8 a seguir exibe em forma de gráfico a diferença de performance após

generalização dos resultados. Observa-se que, como anteriormente comentado, os modelos

treinados com aumento de base (2, 4 e 6) apresentam crescimento nos coeficientes de

Jaccard e Dice, enquanto ouve redução nos resultados dos modelos restantes, treinados

com poucos exemplos.

Figura 8 – Gráfico dos resultados originais e da generalização

Fonte: Próprio autor
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5.2 Eficiência do Aumento de Base

As imagens resultantes de modelos treinados com aumento de base apresentam mais

detalhes quanto ao contorno dos corpos vertebrais. As figuras 9 e 10 a seguir retratam as

diferenças entre as predições provenientes de modelos treinados com e sem operações de

aumento de base.

Figura 9 – Predição feita por modelo com aumento de base

Fonte: Próprio autor

Figura 10 – Predição feita por modelo sem aumento de base

Fonte: Próprio autor

Percebe-se também que a média do IoU é menor quando comparada aos resultados

de modelos treinados com aumento de base. A imagem 11 a seguir exibe os coeficientes de

Jaccard e de Dice após aplicação de modelos com e sem aumento na mesma imagem.

5.3 Resultado das Predições

As figuras 12, 13 e 14 apresentam algumas predições e são acompanhadas de uma

breve discussão sobre os resultados obtidos. As segmentações apresentadas foram obtidas

a partir do modelo 6, uma vez que este foi treinado com o maior aumento de base, contendo

nove operações; e este obteve o melhor resultado no teste de generalização. Cada caso

está acompanhado de sua máscara verdadeira.
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Figura 11 – Coeficientes de Jaccard e Dice após aplicação de modelo com e sem
aumento de base

Fonte: Próprio autor

Figura 12 – Caso em que o corpo é detectado, porém segmentado incorretamente

Fonte: Próprio autor

A figura 12 demonstra que o modelo foi capaz de identificar que o corpo vertebral L4

estava fraturado, porém não conseguiu segmentá-lo corretamente. Isto pode ser devido ao

padrão mais escuro da imagem original.
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Figura 13 – Caso em que estruturas vizinhas também são segmentadas

Fonte: Próprio autor

Semelhante ao caso anterior, a figura 13 demonstra que o modelo foi capaz de identifi-

car que o corpo vertebral L5 está fraturado, porém não conseguiu segmentá-lo corretamente,

incluindo estruturas vizinhas na máscara gerada. Também neste caso é provável que o

padrão da imagem original, na qual o corpo vertebral L2 possui tom de cinza similar ao corpo

fraturado, tenha prejudicado o desempenho do modelo. Tal resultado pode prejudicar o traba-

lho do profissional, uma vez que haveria retrabalho para checar se os corpos segmentados

incorretamente estão realmente fraturados ou não.

Figura 14 – Caso em que a predição melhor se aproxima da máscara verdadeira

Fonte: Próprio autor
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A predição exibida na figura 14 apresentou o melhor resultado, tendo os melhores

coeficientes. Esse resultado pode ser de maior interesse para o radiologista, já que exibe as

condições do corpo vertebral fraturado e tem maior utilidade como "segunda opinião".

Os resultados exibidos demonstram a variabilidade dos resultados e suas possíveis

interpretações clínicas. No geral, os modelos foram capazes de executar predições satisfa-

tórias para uma primeira implementação. Porém, fica evidente a necessidade de estudos

futuros voltados para o melhorias no processo de treinamento.

O trabalho realizado por HWANG; KIM; JUNG foi realizado com metodologia similar,

utilizando dados de ossos saudáveis e de ossos afetados por doenças hematológicas para

treinar modelos de U-net, contando com aumento de base, batch size de 32 e 100 épocas

para o treinamento. O modelo treinado apenas com dados de ossos adoecidos foi capaz de

obter médias do coeficiente de Jaccard de 0.9128 e Dice de 0.9502, segmentando todos os

corpos vertebrais presentes nas imagens. Nota-se que o modelo treinado a partir de dados

de ossos tanto saudáveis como de ossos prejudicados teve performance um pouco melhor

quanto ao que foi treinado apenas com ossos adoecidos.

Conseguindo segmentar os corpos vertebrais fraturados, mas não atingindo métri-

cas de avaliação tão altas como o trabalho anteriormente mencionado; o modelo criado

no presente trabalho foi capaz de realizar o objetivo de segmentar os corpos vertebrais

fraturados.
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6 CONCLUSÃO

O uso de técnicas de machine learning no ambiente clínico precisam gerar respostas

precisas e os algoritmos também devem ser ágeis para que o profissional possa obter uma

"segunda opinião"confiável. Dessa forma, pode-se concluir que a U-net possui alto potencial

para a segmentação de corpos vertebrais, sejam esses fraturados ou não; havendo também

diversos trabalhos na literatura focados na segmentação tridimensional de corpos vertebrais

e outras estruturas do corpo.

Os modelos criados foram capazes de diferenciar corpos vertebrais fraturados dos

saudáveis. Assim, atendendo ao objetivo inicial do trabalho de estudo de modelo de U-net

para segmentação bidimensional. Com uma performance de até 0.89 para o coeficiente de

Jaccard e 0.99 para o coeficiente de Dice considerando a etapa de treinamento e validação

e 0,74 e 0,62 respectivamente para os coeficientes de Jaccard e Dice considerando a etapa

de teste independente. Nota-se que modelos treinados de U-net são promissores para

segmentação bidimensional de corpos vertebrais fraturados. Porém, deve-se ressaltar que

tais resultados podem melhorar significativamente com uma base de dados maior, pois esta

possibilitaria um aumento de base superior e, consequentemente, haveriam mais dados

disponíveis para o treino de modelos.

Espera-se que o presente trabalho realizado possa servir como base para outros

projetos a serem desenvolvidos e que futuramente o prognóstico e diagnóstico de fraturas

vertebrais seja melhor e mais acessível aos pacientes.
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Apêndices



APÊNDICE A – CÓDIGO

DESENVOLVIDO

A seguir, pseudocódigo da lógica seguida para a elaboração do código feito neste

trabalho. Foram seguidas as aulas do curso "Segmentação de Imagens de A a Z"de Jones

Granatyr na plataforma Udemy. O pseudocódigo foi dividido em blocos para facilitar a

compreensão de cada etapa.

A.1 Importação de Bibliotecas

1 import os, shutil

2 import numpy as np

3 import cv2

4 from tqdm import tqdm

5 from matplotlib import pyplot as plt

6 import tensorflow

7 import random

8 from glob2 import glob

A.2 Carregar Base de Dados

1 def carregar_dataset(caminho do arquivo):

2 X_train = caminho das imagens de treino

3 y_train = caminho das mascaras de treino

4 x_test = caminho das imagens de teste

5 y_test = caminho das mascaras de teste

6

7 (X_train , y_train), (X_test , y_test) = carregar_dataset(caminho do arquivo)

A.3 Pré-Processamento

1 largura = 256

2 altura = 265
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3 canais = 3

4 dataset_imagens = imagens de X_train redimensionadas para largura e altura

5 mascaras = mascaras de y_test redimensionadas para largura , altura e canal

de cor alterado para 1

A.4 Aumento de base

1 import tensorflow as tf

2 import albumentations as A

3

4 def criar_diretorio(camimnho):

5 if diretorio nao existe:

6 criar diretorio novo

7

8 criar_diretorio(’Diretorio para imagens e m s c a r a s de treino com aumento de

base’)

9 criar_diretorio(’Diretorio para armazenar imagens e m s c a r a s de teste ’)

10

11 def aumento(imagens , mascaras , diretorio , altura , largura , aumento=True):

12 for imagens no diretorio informado:

13 if aumento = True:

14 aplicar transformacoes nas imagens

15 else:

16 nao aplicar transformacoes

17 for todas as imagens e mascaras:

18 redimesionar altura e largura para 256

19

20 aumento(X_train , y_train , ’Diretorio para imagens e mascaras de treino com

aumento de base’, aumento = True)

21 aumento(X_test , y_test , ’Diretorio para armazenar imagens e mascaras de

teste’, aumento = False)

A.5 Construção da Rede

1 from tensorflow.keras.models import Model

2 from tensorflow.keras.layers import Input , Conv2D , MaxPooling2D ,

UpSampling2D , concatenate , Conv2DTranspose , BatchNormalization , Dropout ,

Lambda , ReLU
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3 from tensorflow.keras.optimizers import Adam

4 from tensorflow.keras.layers import Activation , MaxPool2D , Concatenate

5 from tensorflow.keras.callbacks import ModelCheckpoint , EarlyStopping ,

TensorBoard , ReduceLROnPlateau , CSVLogger

6 from tensorflow.keras.metrics import Recall , Precision4

7 from keras import backend as K

8

9 def bloco_cov(input , num_filtros):

10 criar bloco de convolucao

11

12 def bloco_encoder(input , num_filtros):

13 criar bloco bloco_encoder

14

15 def bloco_decoder(input , num_filtros):

16 criar bloco de bloco_decoder

17

18 def modelo_unet(formato):

19 montar modelo de u-net

20

21 def IoU(mascara_verdadeira , predicao , smooth = 1):

22 definir o calculo do IoU

23

24 def coef_Dice(mascara_verdadeira , predicao , smooth = 1):

25 definir o calculo do coeficiente de Dice

26

27 def perda_coef_dice(mascara_verdadeira , predicao):

28 definir a perda do coeficiente de Dice

29

30 epochs = 50

31 batch_size = 2

32 lr = 1e-4

33

34 modelo = modelo_unet ((altura , largura , 3))

35 """ compilar modelo com as metricas estabelecidas """

A.6 Treinamento

1 criar_diretorio(Criar diretorio para armazenar os modelos criados)

2 callbacks(implementar save_best_only para salvar apenas o melhor modelo)
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3 history = treinar modelo

A.7 Carregar Modelo

1 from tensorflow.keras.utils import CustomObjectScope

2 from tensorflow.keras.models import load_model

3 modelo_teste = carregar(carregar modelo salvo)

A.8 Teste

1 def segmenta_imagem(imagem , modelo):

2 predicao = aplicar modelo_teste em imagem

3

4 carregar diretorio de imagens teste

5 for imagens em imagens_teste:

6 predicao = segementa_imagem(imagem , modelo_teste)

A.9 Avaliação

1 from sklearn.metrics import accuracy_score

2 from tensorflow.keras.metrics import MeanIoU

3

4 lista_scores = []

5

6 for imagens em teste_imagens:

7 segmenta_imagem(imagem , modelo_teste)

8

9 Iou = valor_iou(mascara , predicao)

10 dice = dice_coe(mascara , predicao)

11

12 lista_scores = recebe os valores de Iou e Dice para cada predicao

13

14 print(f"\ n M d i a do IoU: media do Iou")

15 print(f"\ n M d i a do coeficiente de Dice: media do coeficiente de Dice")

16

17 lista_scores #exibir dados de todas as predicoes


